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RSA

© Invented by Rivest, Shamir and Adleman in 1977

© Secret key: prime numbers p, g; and private exponent d
© Public key: modulus N=pqg and public exponent e

© ed mod (p-1)(g-1) =1,1.e.ed =1+ k (p-1)(g-1)

© Encryption of a message M: C = M® mod N

© Decryption (signing) of C: C¢ mod N = M@ mod N = M
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Secure Encryption

© Ciphertext C must not reveal any information about the plaintext M (semantic
security)

© The “textbook RSA” is not semantically secure

© Example, encrypting yes/no votes. Given an encrypted vote C = v¢ mod N, an
attacker can easily encrypt both votes and compare the results to C.

© Random padding has to be applied before encryption
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Secure Signatures

© Existential unforgeabillity: Given message/signature pairs
(M1,S1), (M2,S2), ..., (Mm, Sm)

It must be impossible to create one more signature (M,S)

© “Textbook RSA” is not existentially unforgeable, because of the homomorphic
property:

M19 M29mod N = (M1M2)4 mod N

© Paddings have to be used!
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Classification: Targets

© Against RSA itself: factoring large integers, quantum computers and Shor’s
algorithm

© Against improper use of RSA in protocols: common modulus, blinding

© Against improper choice of parameters: low private exponent, low public
exponent, Hastad broadcast attack, Franklin-Reiter related message attack,
Coppershmith’s short pad attack, etc.

© Against improper implementations: partial key exposure attacks, improper
random numbers, timing-attacks, power-consumption attacks, random faults,
Bleichenbacher’s attack on PKCS#1 padding
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Classification: Inputs

© Public-key only attacks
© Attacks that require physical access to implementation
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Classification: Impact

© Decrypted ciphertext

© Forged signature

© Factorization of the modulus

© Method of factoring all moduli (e.g. Shor’s algorithm)

02.11.2017 7



Partial Key Exposure

© Given an n-bit RSA modulus N, and n/4 least significant bits of the secret
modulus d, it is easy to compute d

© Given an n-bit RSA modulus N=pqg, and n/4 least/most significant bits of p, the
modulus N can be factored (Coppersmith 1996)
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Timing Attacks

© Let dndn-1 ... d1do be the bit-representation of d. The computation of M9 mod N
Is performed as follows:

z=M,C:=1

Foreveryi=0... N-1do:
ifdi=1,thenC:=CzmodN
Z:=z2mod N

© The attacker asks the smartcard to compute a large number of exponents, measures
the times and reconstructs d using statistical analysis.
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Random Faults

© Smartcard applications of RSA frequently use CRT (Chinese Reminder
Theorem) to speed up M9 mod N where N=pq

d’:=d mod p-1 d”:=d mod g-1

C'=Mmodp C”:=M%"modq
C:=c’'qC’+c”p C”mod N where ¢’and c¢” are constants suchthatcq+c’p=1

© Error occurs when computing C” and C is the erroneous version of C. Then
Cée=Mmodp but Cfl=Mmodqg

© Hence, attacker can compute gcd (N, C¢ - M) = p and to factorize N
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Bleichenbacher’s Attack

© The PKCS 1 padding looks like as follows:

02 | Random | 00 | Message

© Say a server receives encrypted messages and returns an “invalid ciphertext”
error message If the decrypted message has an incorrect padding

© So, sending a “random” ciphertext C to the server, an attacker will know if the
corresponding plaintext has 02 in the beginning

© Bleichenbacher showed in 1998 that if an attacker who has access to such a
server, can decrypt any ciphertext
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Weak Random Numbers

© Cryptographically secure random numbers are crucial for generating proper
RSA keys

© In 2012: Lenstra et al discovered that many public-key certificates contain the
same public keys and many share a common prime

© In 2013: Taiwan’s secure digital IDs use weak random

© Out of about 2 million 1024-bit RSA keys,184 keys were generated so poorly
they could be broken in a matter of hours. Some pairs of keys shared the
same prime number
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Attack against Taiwan digital IDs

inspect repeated primes,
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Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia Heninger, Tanja Lange, and Nicko van Someren. 2013. Factoring RSA Keys from
Certified Smart Cards: Coppersmith in the Wild. In Advances in Cryptology - ASIACRYPT 2013. Springer-Verlag, 341-360.
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Weak Prime Numbers

© Even if the random numbers used by a smartcard are ok, the choice of prime
numbers may be poor

© That I1s the case with the current Estonian ID-card incident

© To search for prime numbers, smart-cards use several (so called) fast-prime
methods, that fasten the search, but at the same time, reduce the number of
candidate primes

© Each such method characterizes the card and can be identified by running
tests on public moduli

© We can check if a key is produced by the particular Infineon chip used by the
Estonian ID-card
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The Weakness

© Nemec, Sys, Svenda, Klinec, and Matyas discovered that the Infineon chip
produces prime numbers of the form:

p =655372mod M + kM,

where M is constant and the same for all chips. For 2048-bit modulus N, it is
the product of the first 126 primes.

© Hence, all public moduli N satisfy (65537°-N) mod M. This is the test of weak
moduli, the authors published.

© Nalive search: try all ordw(65537) possible a-s and try to find k
© Naive search does not work: the number of a-s to examine would be 22>4
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The Science

© Main idea: Use a divisor M’ of M, such that ordw(65537) Is feasible, but still
the number of bits in M’ is larger than 2048/4 (necessary for the Coppersmith
attack)

© Then, the prime numbers are still expressible in the form:

p = 655372 mod M’ + kKM’

© Authors found optimal M’ in terms of the overall attack time by brute force
search combined with greedy heuristics
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Parameter optimization Parameter optimization
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Widely Used RSA Moduli. In 24th ACM Conference on Computer and Communications Security (CCS'2017) ACM, 1631-1648
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The Impact

© By using optimal M’, the number of possible a-s is 234 for 2048-bit RSA
modulus

© kis found in 200 ms (on one core of 3GHz Intel Xeon E5-2650 v3) by using
the Coppersmith’s algorithm (1996)

© The total cost per key is about 140 CPU years
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Certified 1s not Secure

© The Infineon chip is Common Ciriteria certified
© How could such a flaw slip through certification?

© Certifications do not certify that the product is secure against known and
unknown threats

© They just certify that certain functions were implemented according to
specification

© At the time of certification, the fast prime generation methods were not known
to have any weaknesses
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Conclusions

© In spite of having been attacked through 40 years, RSA itself has no known
weaknesses

© Only quantum computers can break RSA efficiently
© Vulnerabilities in soft- and hardware are inevitable
© We must have mechanisms in place to mitigate those vulnerabillities

© IT-Systems design/management must take potential unknown vulnerabilities
Into account
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