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RSA

Invented by Rivest, Shamir and Adleman in 1977

Secret key: prime numbers p, q; and private exponent d

Public key: modulus N=pq and public exponent e

ed mod (p-1)(q-1) = 1, i.e. ed = 1 + k (p-1)(q-1) 

Encryption of a message M:  C = Me mod N

Decryption (signing) of C: Cd mod N = Med mod N = M
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Secure Encryption

Ciphertext C must not reveal any information about the plaintext M (semantic 

security)

The “textbook RSA” is not semantically secure

Example, encrypting yes/no votes. Given an encrypted vote C = ve mod N, an 

attacker can easily encrypt both votes and compare the results to C.  

Random padding has to be applied before encryption
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Secure Signatures

Existential unforgeability: Given message/signature pairs 

(M1,S1), (M2,S2), … , (Mm, Sm) 

it must be impossible to create one more signature (M,S)

“Textbook RSA” is not existentially unforgeable, because of the homomorphic 

property:

M1
d M2

d mod N = (M1M2)d mod N

Paddings have to be used!
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Classification: Targets

Against RSA itself: factoring large integers, quantum computers and Shor’s 

algorithm

Against improper use of RSA in protocols: common modulus, blinding

Against improper choice of parameters: low private exponent, low public 

exponent, Hastad broadcast attack, Franklin-Reiter related message attack, 

Coppershmith’s short pad attack, etc. 

Against improper implementations: partial key exposure attacks, improper 

random numbers, timing-attacks, power-consumption attacks, random faults, 

Bleichenbacher’s attack on PKCS#1 padding
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Classification: Inputs

Public-key only attacks

Attacks that require physical access to implementation
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Classification: Impact

Decrypted ciphertext

Forged signature

Factorization of the modulus

Method of factoring all moduli (e.g. Shor’s algorithm)
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Partial Key Exposure

Given an n-bit RSA modulus N, and n/4 least significant bits of the secret 

modulus d, it is easy to compute d

Given an n-bit RSA modulus N=pq, and n/4 least/most significant bits of p, the 

modulus N can be factored (Coppersmith 1996)
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Timing Attacks

Let dndn-1 … d1d0 be the bit-representation of d. The computation of Md mod N

is performed as follows:

z := M, C := 1

For every i = 0 … N-1 do:

if di = 1, then C := C z mod N

z := z2 mod N

The attacker asks the smartcard to compute a large number of exponents, measures 

the times and reconstructs d using statistical analysis.
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Random Faults

Smartcard applications of RSA frequently use CRT (Chinese Reminder 

Theorem) to speed up Md mod N where N=pq

d’ := d mod p-1       d’’ := d mod q-1

C’ := Md’ mod p C’’ := Md’’ mod q

C := c’ q C’ + c’’ p C’’ mod N where c’ and c’’ are constants such that c’q + c’’p = 1 

Error occurs when computing C’’ and C is the erroneous version of C. Then 

Ce = M mod p but      Ce != M mod q

Hence, attacker can compute gcd (N, Ce - M) = p and to factorize N
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Bleichenbacher’s Attack

The PKCS 1 padding looks like as follows:

02 | Random | 00 | Message

Say a server receives encrypted messages and returns an “invalid ciphertext” 

error message if the decrypted message has an incorrect padding

So, sending a “random” ciphertext C to the server, an attacker will know if the 

corresponding plaintext has 02 in the beginning

Bleichenbacher showed in 1998 that if an attacker who has access to such a 

server, can decrypt any ciphertext

02.11.2017 11



Weak Random Numbers

Cryptographically secure random numbers are crucial for generating proper 

RSA keys

In 2012: Lenstra et al discovered that many public-key certificates contain the 

same public keys and many share a common prime

In 2013: Taiwan’s secure digital IDs use weak random

Out of about 2 million 1024-bit RSA keys,184 keys were generated so poorly 

they could be broken in a matter of hours. Some pairs of keys shared the 

same prime number
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Attack against Taiwan digital IDs
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Weak Prime Numbers

Even if the random numbers used by a smartcard are ok, the choice of prime 

numbers may be poor

That is the case with the current Estonian ID-card incident

To search for prime numbers, smart-cards use several (so called) fast-prime 

methods, that fasten the search, but at the same time, reduce the number of 

candidate primes

Each such method characterizes the card and can be identified by running 

tests on public moduli

We can check if a key is produced by the particular Infineon chip used by the 

Estonian ID-card

02.11.2017 14



The Weakness

Nemec, Sys, Svenda, Klinec, and Matyas discovered that the Infineon chip 

produces prime numbers of the form:

p = 65537a mod M  +  kM, 

where M is constant and the same for all chips. For 2048-bit modulus N, it is 

the product of the first 126 primes. 

Hence, all public moduli N satisfy (65537c-N) mod M. This is the test of weak 

moduli, the authors published. 

Naive search: try all ordM(65537) possible a-s and try to find k 

Naive search does not work: the number of a-s to examine would be 2254
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The Science

Main idea: Use a divisor M’ of M, such that ordM’(65537) is feasible, but still 

the number of bits in M’ is larger than 2048/4 (necessary for the Coppersmith 

attack)

Then, the prime numbers are still expressible in the form:

p = 65537a’ mod M’  +  k’M’

Authors found optimal M’ in terms of the overall attack time by brute force 

search combined with greedy heuristics
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The Impact

By using optimal M’, the number of possible a-s is 234 for 2048-bit RSA 

modulus

k is found in 200 ms (on one core of 3GHz Intel Xeon E5-2650 v3) by using 

the Coppersmith’s algorithm (1996)

The total cost per key is about 140 CPU years
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Certified is not Secure

The Infineon chip is Common Criteria certified

How could such a flaw slip through certification? 

Certifications do not certify that the product is secure against known and 

unknown threats

They just certify that certain functions were implemented according to 

specification

At the time of certification, the fast prime generation methods were not known 

to have any weaknesses
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Conclusions

In spite of having been attacked through 40 years, RSA itself has no known 

weaknesses

Only quantum computers can break RSA efficiently

Vulnerabilities in soft- and hardware are inevitable

We must have mechanisms in place to mitigate those vulnerabilities

IT-Systems design/management must take potential unknown vulnerabilities 

into account
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